

L'eau chaude du futur

Notice technique

MIXTHERM

MAJ 12/2024 Code Notice: 560913

Fabrication Française

Z.I. des Sablons- CS 50166 - 89101 SENS Cedex - FRANCE Tél. : + 33 (0) 3 86 64 73 73 - Fax : + 33 (0) 3 86 95 21 83 E-mail : commercial@charot.fr - www.charot.fr

S.A. AU CAPITAL DE 1 500 000 €

Notice technique

MIXTHERM

MAJ 12/2024 Code Notice : 560913

SOMMAIRE

		Pages
1)	DESCRIPTION	4
2)	HOMOLOGATIONS - REGLEMENTATIONS	5
3)	INSTALLATION - MONTAGE	5
	3.1) Précautions de mise en place	6
	3.2) Montage de la jaquette	6
	3.3) Collage de l'étiquette d'identification	7
	3.4) Anode de protection en Magnésium	7
	3.5) Option appoint électrique	8
	 3.6) Montage des options 3.6.1 Vanne 3 voies départ ECS 3.6.2 Anode de protection en Titane 3.6.3 Pompe d'homogénéisation 3.6.4 Chasses rapides automatiques 	11 12 12 12 13
	3.7) Schémas de principe	14
4)	MISE EN SERVICE	19
	4.1) Remplissage de l'appareil	19
	4.2) Première mise en chauffe	19
	4.3) Qualité de l'eau	20
5)	RECOMMANDATIONS LEGIONELLES	21
	5.1) Pack control 4® (Option)	22
6)	TRANSPORT, STOCKAGE, MANUTENTION	23
7)	ENTRETIEN	24
8)	GARANTIES	25
9)	PIECES DE RECHANGE	26
10) EN CAS DE PANNE	26
11) CARACTERISTIQUES	27
	11.1) Dimensions - Poids - Puissances	27
	11.2) Caractéristiques des serpentins	29
	11.3) Isolation	30
	11.4) Données Ecoconception selon règlements 812/2013 et 814/2013	31

1) DESCRIPTION

L'eau chaude en toute circonstance

Les chauffe-eau **MIXTHERM** sont conçus pour fonctionner avec tout fluide primaire (eau chaude) provenant de chaudières traditionnelles, fioul, gaz, bois, ou capteur solaire, pompe à chaleur, récupérateur de calories etc... Ils peuvent également être chauffés à l'aide d'appoints électriques.

Version A.T.L

- Réservoirs verticaux en Acier Thermo-Laqué (A.T.L.)
- Protection cathodique par anode consommable en magnésium (de série) ou anode inusable par courant imposé en titane (en option)
- Pression de service 7 bar maximum
- Température ≤ 85°C
- Orifices suivant plans
- 1 ou 2 échangeurs serpentins en acier inoxydable pouvant être alimentés par tout type de fluide chauffant, haute ou basse température.
 - Pression de service 7 bar maximum
- Isolation au choix classée au feu par un laboratoire accrédité COFRAC :
 - Calofibre classée au feu M1 Ep50 de 200 L à 300 L et Ep 100 de 500 L à 1000 L

Version inox

- Réservoirs verticaux en inox 316 L décapés et passivés à 100%
- Sans anode
- Pression de service 7 bar maximum
- Température ≤ 95°C
- Orifices suivant plans
- 1 ou 2 échangeurs serpentins en acier inoxydable pouvant être alimentés par tout type de fluide chauffant, haute ou basse température
 - Pression de service 7 bar maximum
- Isolation au choix classée au feu par un laboratoire accrédité COFRAC :
 - Calofibre classée au feu M1 Ep50 de 200 L à 300 L et Ep 100 de 500 L à 1000 L

2) HOMOLOGATIONS - REGLEMENTATIONS

- Attestation de Conformité Sanitaire : tous nos composants en contact avec l'eau destinée à la consommation humaine possèdent une ACS.
- Appareils à pression: Nos ballons sont conformes à l'article 4.3 de la Directive européenne des équipements sous pression DESP 2014/68/UE, transposée en droit Français.
- Appareillage électrique : Les équipements électriques proposés sont conformes à :
 - **Décret 2015-1083** relatif à la sécurité des personnes, des animaux et des biens lors de l'emploi des matériels électriques destinés à être employés dans certaines limites de tension.
 - Transposition en droit français de la directive européenne basse tension 2014/35/UE.
 - Certains articles des normes Sécurité des appareils électrodomestiques et analogues :
 - o NF EN 60 335 -1 : règles générales
 - o NF EN 60 335 2 21 : règles particulières pour les chauffe-eaux à accumulation

3) INSTALLATION - MONTAGE

- Poser le réservoir à l'endroit souhaité : voir précautions paragraphe 3.1)
- **Mettre** en place la jaquette : voir instructions paragraphe 3.2)
- **Coller** l'étiquette d'identification finale : voir instructions paragraphe 3.3)
- Monter l'anode en réalisant l'étanchéité dans le filet (version acier ATL) : voir instructions paragraphe 3.4)
- Monter et Raccorder le thermoplongeur (options appoint Elec) : voir paragraphe 3.5)
- Monter les accessoires du kit (en option) sur le réservoir (voir paragraphe 3.6)
- Raccorder les tuyauteries sur le réservoir en respectant les préconisations générales des schémas d'installation (voir paragraphe 3.7)
- **Equiper** le circuit raccordé à l'échangeur serpentin d'un circulateur adapté à la puissance et à la perte de charge de celui-ci (voir caractéristiques des serpentins paragraphe 11.2).
- Purger l'échangeur à l'aide d'un purgeur placé au plus haut de la tuyauterie Primaire.
- **Remplir** le réservoir d'eau. S'assurer du bon remplissage par soutirage à un robinet raccordé au ballon par exemple.
- Manœuvrer la(les) soupape(s)
- Vérifier le serrage des connexions électriques

3.1) Précautions de mise en place

Nos matériels de production d'eau chaude doivent être installés conformément :

- aux normes en vigueur
- aux prescriptions du D.T.U
- aux prescriptions ci-dessous

Implantations (obligatoire dans un local chaufferie).

Les chauffe-eau ne sont pas conçus pour être installés :

- dans une atmosphère corrosive
- dans une atmosphère explosive
- en extérieur

Les chauffe-eaux MIXTHERM doivent être installés dans un local ventilé afin de maintenir une température ambiante inférieure à 30°C.

Humidité relative 30 à 80 % (non condensée).

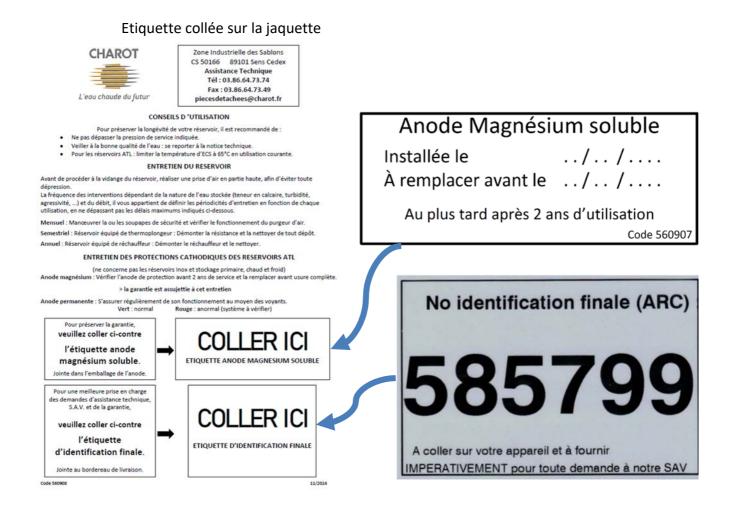
Le local doit être accessible par camion permettant leur retrait éventuel sans manutention ni démolition quelconque. Prévoir un dégagement suffisant autour du réservoir pour le montage des accessoires (jaquette, thermoplongeur, etc.) et les opérations d'entretien.

L'emplacement choisi devra être plan et de résistance suffisante pour supporter le poids du réservoir plein et des accessoires.

Il est obligatoire d'installer :

- Une **soupape de sécurité** dimensionnée et tarée à la pression de service du matériel sur l'arrivée d'eau froide et au plus près du ballon. Aucun organe de fermeture ou séparation (vanne d'isolement, clapet, ...) ne doit être installé entre le ballon et cette soupape. Son raccordement de sortie doit être maintenu ouvert à l'atmosphère et raccordé à l'égout.
- Une purge d'air sur le départ d'eau chaude (évacuation des gaz dissous)
- Une vanne de vidange pour l'évacuation des dépôts.
- Ne pas mélanger différents métaux favorisant les couples électrochimiques (ex : Cuivre + Acier).
 La mise en place de raccords diélectrique est vivement recommandée dans le cas de tuyauteries en cuivre.

Prévoir une vanne d'entrée d'air en partie haute pour éviter toute dépression lors de la vidange du ballon (hors garantie).


3.2) Montage de la jaquette

Avant de positionner définitivement le ballon à son emplacement final, lire attentivement la notice de montage fournie dans l'emballage de la jaquette.

- Notice de montage jaquette isolante Calofibre : code notice 560830

3.3) Collage de l'étiquette d'identification

Une **étiquette d'identification** du matériel est fournie avec le document accompagnant le matériel. Une fois la jaquette montée, <u>coller cette étiquette</u> d'identification à l'emplacement réservé. La référence sera à indiquer obligatoirement pour toute demande de SAV.

3.4) Anode de protection en Magnésium

Anodes magnésium soluble (790061 à 790062) :

L'anode sera montée directement sur le manchon 33/42 prévu à cet effet.

L'étanchéité sera réalisée dans le filet à l'aide de pâte et de filasse par exemple. Les matériaux utilisés devront avoir l'attestation de conformité sanitaire (**ACS**).

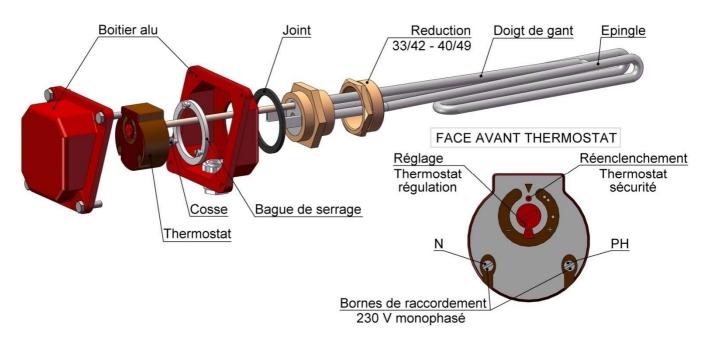
Il est nécessaire de vérifier l'anode magnésium soluble de protection avant 2 ans de service et la remplacer avant usure complète.

> la garantie est assujettie à cet entretien

Afin de faciliter la vérification, une étiquette est fournie avec l'anode, permettant d'indiquer la date d'installation et de remplacement de celle-ci.

Une fois la jaquette montée, coller cette étiquette à l'emplacement réservé.

3.5) Option appoint électrique


Le thermoplongeur sera monté sur le manchon 40/49 prévu à cet effet. L'étanchéité sera réalisée dans le filet, à l'aide de pâte et de filasse par exemple. Les matériaux utilisés devront avoir l'attestation de conformité sanitaire (ACS). Le joint fourni ne peut être utilisé qu'en cas de montage avec portée de joint usinée.

Thermoplongeur

Capacité litres	Appoint électrique	Double électrique	Tout électrique	
200	1 v 1 E kW	2 v 1 E kW	1 x 2 kW	
300	1 x 1.5 kW	2 x 1,5 kW	1 x 3 kW	
500	1 x 3 kW	1 x 3 kW + 1 x 2 kW		
750	1 x 4,5 kW	2 x 4,5 kW	1 x 9 kW	
1000	1 x 6 kW	2 x 6 kW	1 x 12 kW	

MONTAGE DES THERMOPLONGEURS 230V Mono - 1,5 et 2 kW Ø 40/49 (2891 et 2893)

- Thermostat de régulation réglable de 16°C à 68°C.
- Thermostat de sécurité réglé à 87°C.
- Sécurité positive à réarmement manuel.
- Intensité nominale 16A maxi.
- Utilisation sans contacteur.

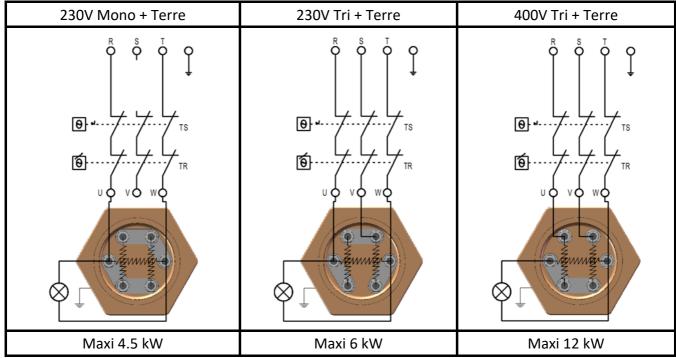
Les thermoplongeurs sont conçus pour être alimentés en 230V monophasés.

Ils sont équipés chacun d'un thermostat double (régulation et sécurité). Il faut le raccorder avec un câble de section adapté à la puissance.

MONTAGE DES THERMOPLONGEURS - 3 à 12 kW Ø 40/49

Pour Version ATL (2645 à 2649)

- Thermostat de régulation réglable de 30°C à 75°C.
- Thermostat de sécurité réglé à 98°C.
- Sécurité positive à réarmement manuel.
- Intensité nominale 20A maxi.
- Utilisation sans contacteur.
- Voyant de mise sous tension.


Pour Version INOX (2640 à 2644)

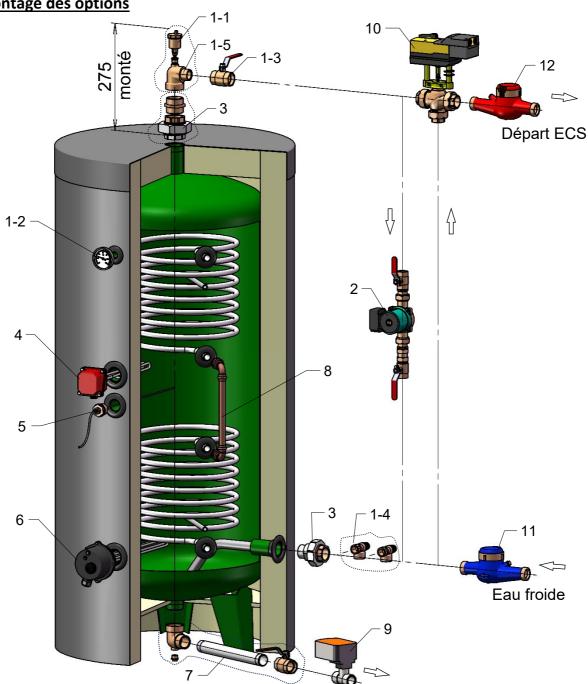
- Thermostat de régulation réglable de 30°C à 90°C.
- Thermostat de sécurité réglé à 110°C.
- Sécurité positive à réarmement manuel.
- Intensité nominale 20A maxi.
- Utilisation sans contacteur.
- Voyant de mise sous tension.

Raccordement électrique

Nota: Couplage en usine 400 V tri + Terre (sans neutre).

Raccordement Électrique

- Le disjoncteur de protection contre les surintensités, le discontacteur et la section des câbles d'alimentation devront être choisis conformément à la **NF C 15100** (tenir compte du mode de pose, de la longueur du câble et du courant de court-circuit).
- Il est nécessaire de prévoir un dispositif de protection à coupure automatique en cas de défaut d'isolement, dispositif différentiel ou autre en fonction du régime de neutre.
- Matériel classe 1 indice de protection IP21 / IK08
- Vérifier le couplage des thermoplongeurs en fonction de la tension du réseau.
- La mise sous tension hors eau conduit à la destruction irrémédiable des thermoplongeurs (sans garantie)


LE RACCORDEMENT A LA TERRE EST OBLIGATOIRE

Les appoints électriques (option)

Les chauffe-eau **MIXTHERM** peuvent recevoir jusqu'à 2 résistances électriques de différentes puissances, autorisant plusieurs possibilités de réchauffage.

- **APPOINT ELECTRIQUE** : une résistance électrique placée en point haut réchauffe le tiers supérieur du réservoir. Cette solution permet un appoint aux énergies basse température (solaires, P.A.C., récupérateurs).
- **DOUBLE ELECTRIQUE**: en complément de la résistance d'appoint électrique ci-dessus, une deuxième résistance est placée au point bas, réchauffant les 2/3 inférieurs du réservoir. Les deux résistances fonctionnent individuellement. Cette solution répond en basse température aux ensoleillements insuffisants et prolongés, aux besoins ponctuels importants, aux arrêts des sources de chaleur.
- **TOUT ELECTRIQUE** : une résistance électrique est placée à la partie basse du réservoir. La puissance est prévue pour réchauffer la totalité du volume. Cette solution convient pour les usages mixtes permettant en été, l'arrêt complet de la chaudière traditionnelle.

3.6) Montage des options

- 1 Kit accessoires (181 et 182).
 - 1-1 Purgeur d'air automatique.
 - 1-2 Thermomètre.
 - 1-3 Vanne d'isolement Ø33/42 (**kit 181**). Vanne d'isolement Ø50/60 (**kit 182**).
 - 1-4 Soupape (kit **181** : 200 à 750L). ou 2 soupapes (kit **182** : 1000L).
 - 1-5 Coude départ E.C.S et prise purgeur.
- 2 Kit pompe homogénéisation (2573).
- 3 Raccord diélectrique (2205 et 2213).

2205 : Ø 50/60 F-F + mamelon.

2213: Ø 40/49 M-F.

4 - Appoint électrique haut (2891 à 2893) (2640 à 2644) et (2645 et 2649).

- 5 Anode insoluble (**194** à **196**). (uniquement pour enveloppe acier).
- 6 Appoint électrique bas (2891 à 2893) (2640 à 2644) et (2645 et 2649).
- 7 Kit vidange (23600 à 23602) 23600 (réservoirs 200 L). 23601 (réservoirs 300 & 500L). 23602 (réservoir 750 & 1000 L).
- 8 Tuyauterie liaison serpentins. (2215 200 et 500L). (2216 300, 750 et 1000L).
- 9 Chasse rapide automatisée (2745).
- 10 Vanne 3 voies motorisée E.C.S. (2786 à 2788).
- 11 Débitmètre E.F (2741, 2742 et 2735).
- 12 Débitmètre E.C.S (2743, 2744 et 2736).

3.6.1 Vanne 3 voies départ ECS

La vanne 3 voies installée sur le départ ECS permet de mitiger la température de sortie du ballon pour assurer la température de distribution à 55°C, comme l'exige la réglementation.

Les vannes 3 voies proposées en option, sont équipées d'un servomoteur à retour à zéro pour assurer la fermeture de la vanne en cas de coupure de courant. Elles peuvent être pilotées par le régulateur Pack Control 4®, à l'aide d'une sonde placée en aval de la vanne 3 voies.

Caractéristiques du servomoteur

Alimentation: 24 V=

Caractéristiques des vannes

Codes

DN

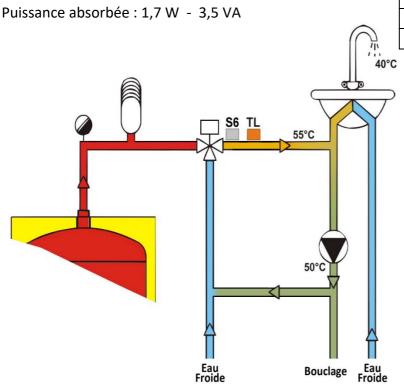
Kvs

2786

32

16

2787


40

22

2788

50

40

3.6.2 Anode de protection en Titane

Anode insoluble (194 à 196):

L'électrode sera montée sur le manchon 33/42 prévu à cet effet avec la réduction 33/42 - 15/21

L'étanchéité sera réalisée dans le filet.

Alimentation électrique : se reporter à la notice de l'anode.

3.6.3 Pompe d'homogénéisation

Afin d'assurer une température homogène dans un ballon ou dans plusieurs ballons montés en série, il est recommandé d'installer une pompe de circulation.

Cette pompe, indépendante du circuit de bouclage, fait circuler l'eau chaude sanitaire depuis le haut du ballon, sur la tuyauterie de départ ECS, jusqu'en en bas du ballon, sur la tuyauterie d'arrivée d'eau froide. Les pompes peuvent être dimensionnées de telle manière que le débit permette de brasser le volume du ou des ballons 1 à 2 fois par heure.

Caractéristiques de la pompe (proposées en option par CHAROT)

Alimentation: 230 V Mono + Terre - 50 Hz

Codes	Volume de	Modèle	Débit * (m³/h)		Puis	sance r (W)	naxi		sité non maxi (A		
	stockage total (litre)	Modele	Vite: 1	sse mo	teur 3	Vite 1	sse mo	teur 3	Vite 1	sse mo	teur 3
2573	jusqu'à 3000	STAR Z 20/5-3	1,2	2,5	3,8	45	66	89	0,20	0,29	0,39

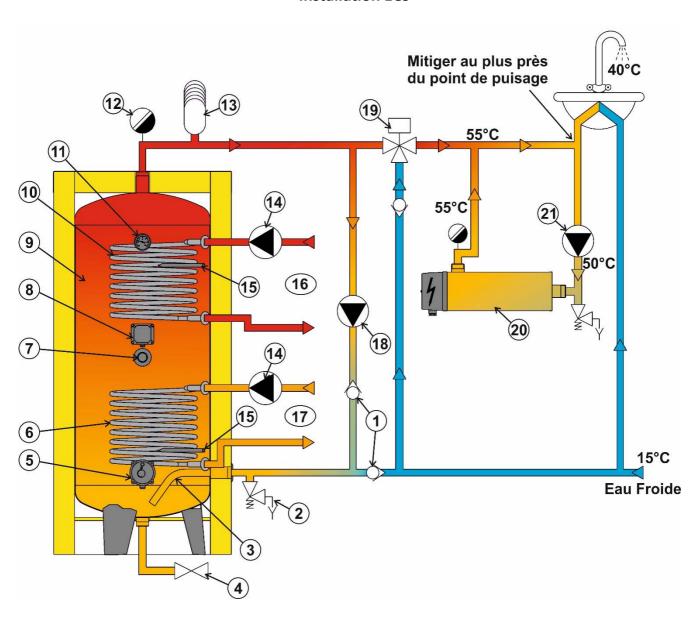
^{*} les débits indiqués peuvent varier en fonction des pertes de charge de l'installation.

Le kit pompe 2573 est composé d'un circulateur, d'un clapet anti-retour et de deux vannes d'isolement.

La pompe d'homogénéisation peut être pilotée par le régulateur Pack Control 4® dans les coffrets de pilotage et les armoires de puissance ELECTR'A. Voir les notices de ces produits.

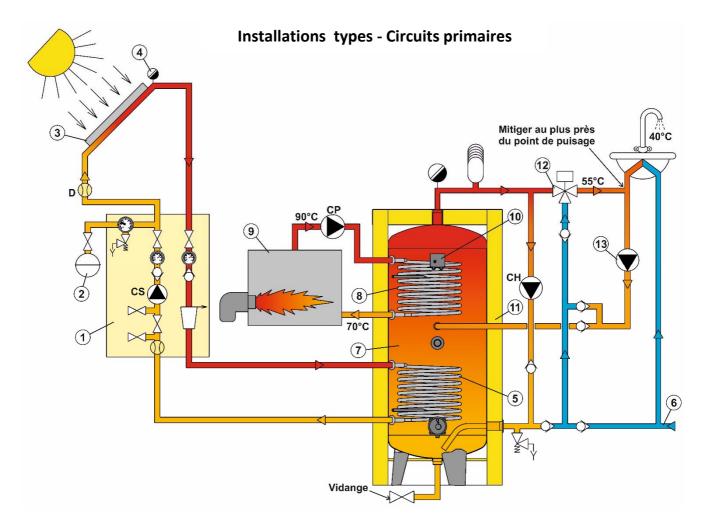
3.6.4 Chasses rapides automatiques

Afin d'assurer une évacuation régulière des dépôts dans le fond des ballons de production d'ECS, CHAROT propose en option, des vannes automatiques à rappel par ressort (fermeture par manque de courant). Ces vannes peuvent être pilotées par le régulateur Pack Control 4®.


Caractéristiques

Alimentation: 230 V Mono + Terre - 50 Hz

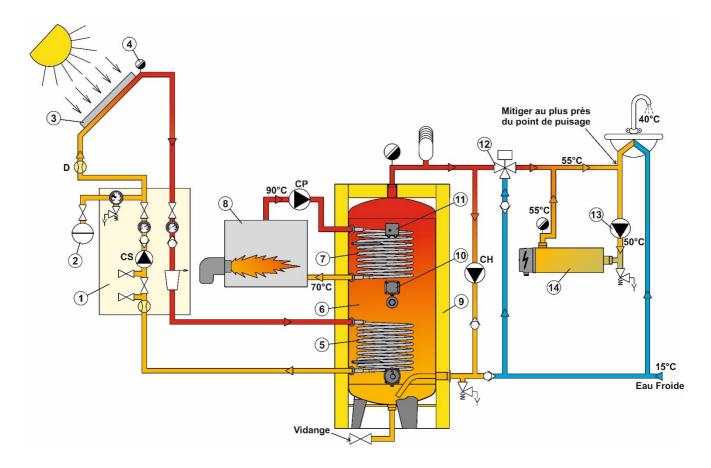
Code	Action	Puissance maxi (W)	Intensité nominale maxi (A)	
	A l'ouverture	5	0.15	
2745	Maintien ouvert	3	0,15	
	A la fermeture	Rappel par ressort		


3.7) Schémas de principe

Installation ECS

- 1 Clapet anti-retour.
- 2 Soupape de sécurité.
- 3 Arrivée anti-dépôt.
- 4 Vidange totale.
- 5 Résistance. Appoint électrique inférieur (option).
- 6 Echangeur bas.
- 7 Anode de protection (version acier).
- 8 Résistance. Appoint électrique. 1/3 supérieur (option).
- 9 Réservoir Mixtherm.
- 10 Echangeur haut.

- 11 Prise thermomètre.
- 12 Purgeur d'air.
- 13 Anti-bélier.
- 14 Circulateur primaire.
- 15 Prise de sonde.
- 16 Circuit chaudière bois, fuel, gaz.
- 17 Circuit panneau solaire, pompe à chaleur.
- 18 Pompe d'homogénéisation.
- 19 V3V E.C.S mitigeage (option).
- 20 Réchauffeur de boucle.
- 21 Pompe de bouclage.



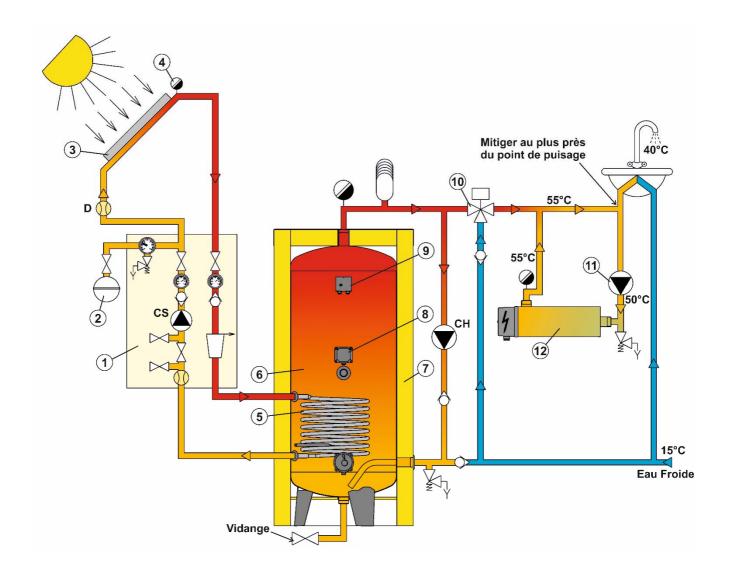
- 1 Station solaire.
- 2 Vase d'expansion.
- 3 Panneau solaire.
- 4 Purgeur d'air.
- 5 Echangeur bas.
- 6 Arrivée E.F.
- 7 Réservoir Mixtherm.

- 8 Echangeur haut.
- 9 Energie d'appoint.
- 10 Thermostat sécurité.
- 11 Calorifuge.
- 12 V3V E.C.S mitigeage.
- 13 Pompe de bouclage.

Raccordement sur **l'échangeur bas** d'une source de chaleur **basse température** (capteur solaire, récupérateur de calories, pompe à chaleur).

Raccordement sur **l'échangeur haut** d'une **chaudière traditionnelle** (fuel, gaz, charbon, bois) La boucle est maintenue en température à l'aide de la chaudière.

- 1 Station solaire.
- 2 Vase d'expansion.
- 3 Panneau solaire.
- 4 Purgeur d'air.
- 5 Echangeur bas.
- 6 Réservoir Mixtherm.
- 7 Echangeur haut.
- 8 Energie d'appoint.

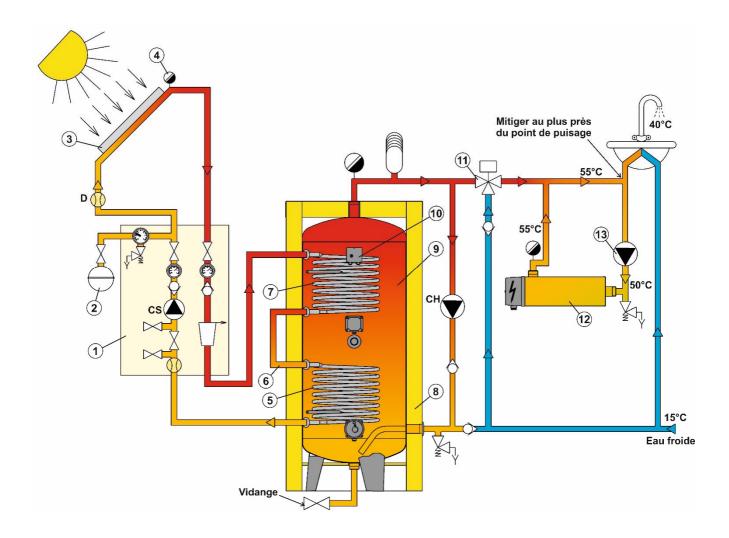

- 9 Calorifuge.
- 10 Résistance. Appoint électrique. 1/3 supérieur (option).
- 11 Thermostat sécurité.
- 12 V3V E.C.S mitigeage.
- 13 Pompe de bouclage.
- 14 Réchauffeur de boucle.

Raccordement sur l'échangeur bas d'une source de chaleur basse température.

Raccordement sur l'échangeur haut d'une chaudière traditionnelle.

+ un **appoint électrique** au 1/3 supérieur du volume permettant un complément de température pendant l'arrêt de la chaudière traditionnelle en été.

La boucle est maintenue en température à l'aide d'un réchauffeur de boucle électrique.


- 1 Station solaire.
- 2 Vase d'expansion.
- 3 Panneau solaire.
- 4 Purgeur d'air.
- 5 Echangeur bas.
- 6 Réservoir Mixtherm.
- 7 Calorifuge.

- 8 Résistance. Appoint électrique. 1/3 supérieur (option).
- 9 Thermostat sécurité.
- 10 V3V E.C.S mitigeage.
- 11 Pompe de bouclage.
- 12 Réchauffeur de boucle.

Raccordement sur l'échangeur bas d'une source de chaleur basse température

- + un appoint électrique au 1/3 supérieur du volume
- + un deuxième appoint électrique en partie basse permettant le fonctionnement en DOUBLE ELECTRIQUE en cas d'insuffisance des sources de chaleur.

La boucle est maintenue en température à l'aide d'un réchauffeur de boucle électrique.

- 1 Station solaire.
- 2 Vase d'expansion.
- 3 Panneau solaire.
- 4 Purgeur d'air.
- 5 Echangeur bas.
- 6 Pièce de liaison serpentin (option).
- 7 Echangeur haut.

- 8 Calorifuge.
- 9 Réservoir Mixtherm.
- 10 Thermostat sécurité.
- 11 V3V E.C.S mitigeage.
- 12 Réchauffeur de boucle.
- 13 Pompe de bouclage.

Les deux serpentins sont reliés hydrauliquement par une pièce de liaison (en option).

Raccordement sur **l'échangeur haut** et sur **l'échangeur bas** <u>en série</u> d'une source de chaleur **basse température** (capteur solaire, récupérateur de calories, pompe à chaleur) ou **haute température**.

- + un appoint électrique au 1/3 supérieur du volume
- + un **deuxième appoint** électrique en partie basse permettant le fonctionnement en **DOUBLE ELECTRIQUE** en cas d'insuffisance des sources de chaleur.

La boucle est maintenue en température à l'aide d'un réchauffeur de boucle électrique.

4) MISE EN SERVICE

4.1) Remplissage de l'appareil

Le remplissage des ballons s'effectue par l'orifice d'arrivée d'eau froide. Prévoir une vanne de purge d'air pour assurer le remplissage complet du ballon. S'assurer du remplissage complet par soutirage à un point de puisage raccordé au ballon, par exemple.

Lorsque de l'eau s'écoule du point de puisage, sans bruit et sans air dans l'eau, laisser couler l'eau 30 secondes puis fermer le robinet. Le ballon est plein.

Si une vanne a été installée entre le ballon et le purgeur d'air, vérifier qu'elle est bien ouverte.

Manœuvrer la soupape de sécurité afin d'en vérifier son bon fonctionnement.

Nota : il ne doit pas y avoir de vanne d'isolement entre le ballon et la soupape de sécurité. Une montée en pression excessive du ballon ayant entrainé quelque endommagement ne sera pas prise en garantie, si une telle vanne est installée.

Manœuvrer la vanne de vidange afin d'évacuer les dépôts ou les impuretés et déchets qui auraient pu s'accumuler au fond du ballon.

Vérifier l'absence de fuite au niveau des raccordements des tuyauteries.

4.2) Première mise en chauffe

<u>Rappel</u>: s'assurer du bon serrage de toutes les connexions électriques afin d'éviter les échauffements en cas de mauvais contact.

Les éléments chauffants type thermoplongeur ne doivent en aucun cas être mis en service si le ballon n'est pas entièrement rempli d'eau. Cela provoquerait une détérioration irrémédiable de la partie chauffante. Ce dommage n'est pas couvert par la garantie.

Lors de la première montée en température du réseau, de l'eau peut s'écouler de la soupape de sécurité, ce qui est normal. Cela est dû à la dilatation de l'eau qui génère une augmentation de la pression du réseau. En aucun cas l'orifice de sortie de la soupape ne doit être bouché. Il doit être raccordé à l'égout.

IMPORTANT: QUALITÉ DE L'EAU

- L'eau destinée à l'utilisation sanitaire est, par excellence, un solvant des substances organiques, minérales ou gazeuses, d'où la nécessité d'une analyse d'eau. Le D.T.U. 60.1 comporte un ensemble de prescriptions qui paraissent les plus aptes à prévenir les corrosions dans les circuits d'eau chaude sanitaire. Si nécessaire, un traitement d'eau devra équiper l'installation afin d'éviter les risques de détérioration du matériel.
- La fonction du générateur de production d'eau chaude sanitaire étant d'élever la température de l'eau, la corrosion et les dépôts de toutes sortes sont donc directement liés à :
 - La composition chimique et notamment la dureté (TH)
 - La quantité d'eau réchauffée
 - La température de fonctionnement

Recommandations fabricant:

Les réservoirs E.C.S. sont conçus pour la production ou le stockage d'eau chaude sanitaire. Toute autre utilisation doit nous être signalée pour validation.

Pour préserver le bon état des réservoirs et garder le bénéfice de la garantie il est impératif de respecter les points suivants :

- Les températures maximales préconisées ne devront pas être dépassées. Prévoir un système, thermomécanique ou autre, permettant de limiter la température, suivant type de matériel.
- En présence d'adoucisseur, le TH ne devra jamais être en dessous de 10 °français, maintenir de préférence une valeur comprise entre 12 et 15 °f.
- Maintenir un PH supérieur ou égal à 7.
- Limiter le taux de chlorures à 30mg/l pour les réservoirs inox.

LE NON RESPECT DE CES RECOMMANDATIONS ANNULE LA GARANTIE CONSTUCTEUR.

5) RECOMMANDATIONS LEGIONELLES

Extrait de l'Arrêté du 30 novembre 2005 :

« Afin de limiter le risque lié au développement des légionnelles dans les systèmes de distribution d'eau chaude sanitaire, (...) les exigences suivantes doivent être respectées :

- lorsque le volume entre le point de mise en distribution et le point de puisage le plus éloigné est supérieur à 3 litres, la température de l'eau doit être supérieure ou égale à 50 °C en tout point du système de distribution, à l'exception des tubes finaux d'alimentation des points de puisage. Le volume de ces tubes finaux d'alimentation est le plus faible possible, et dans tous les cas inférieur ou égal à 3 litres;
- lorsque le volume total des équipements de stockage est supérieur ou égal à 400 litres, l'eau contenue dans les équipements de stockage, à l'exclusion des ballons de préchauffage, doit :
 - être en permanence à une température supérieure ou égale à 55 °C à la sortie des équipements;
 - ou être portée à une température suffisante au moins une fois par 24 heures, sous réserve du respect permanent des dispositions prévues au premier alinéa du présent article. »

Le temps minimum de maintien de la température de l'eau à respecter est le suivant :

TEMPS MINIMUM DE MAINTIEN de la température	TEMPÉRATURE DE L'EAU (°C)
2 minutes	Supérieure ou égale à 70 °C
4 minutes	65 °C
60 minutes	60 °C

Pour effectuer un traitement par choc thermique sur le réseau de distribution jusqu'aux points de puisage, il est recommandé d'élever la température choc thermique à 70°C environ et de réaliser un soutirage pendant 30 minutes sur tous les points de puisage.

Les chocs thermiques doivent être exceptionnels en cas de contamination et être réalisés sous haute surveillance pour éviter tout risque de brûlures.

Il est recommandé d'installer un mitigeur thermostatique au plus près des points de puisage pour abaisser la température de l'eau distribuée conformément à la réglementation.

Attention : réaliser un choc thermique à 70°C dans une installation constituée de tubes en acier galvanisé peut endommager gravement le revêtement galva.

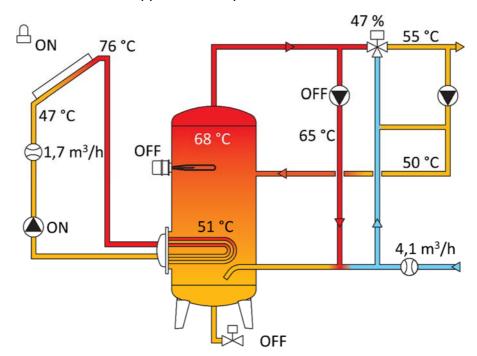
5.1) Pack control 4[®] (Option)

Coffret Pack Control 4® Solaire

Le **Pack control 4**®, en coffret mural, permet de piloter et contrôler à moindre coût une installation d'E.C.S. solaire

Paramétrage de plus de 150 fonctions :

- Régulation et pilotage des composants
- Pilotage des chocs thermiques
- Pilotage de la pompe d'homogénéisation
- Pilotage des chasses rapides automatisées
- Comptage de la consommation et énergies
- Surveillance des températures, débits et pression
- Enregistrement des événements
- Affichage des schémas types (voir ci-dessous)
- Suivi en temps réel sur les courbes de température.



- Manuellement sur l'écran tactile 7" couleur du Pack Control 4®
- A distance via réseau Ethernet ou en Wifi
- Par GTC (protocole Bacnet IP et Modbus RTU).

Armoire de puissance avec Pack Control 4®

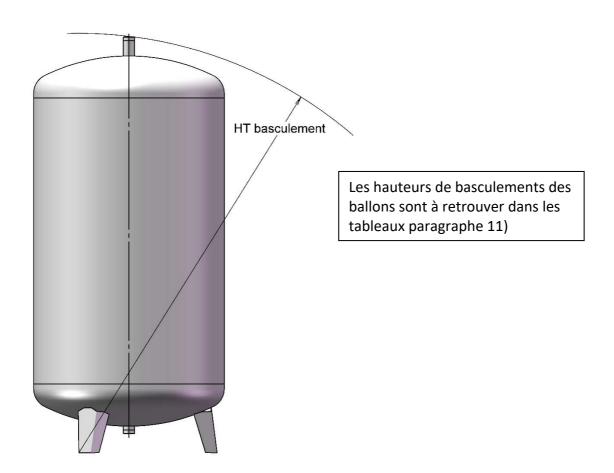
Le **Pack Control 4**® peut être intégré dans une armoire électrique possédant les composants du circuit de puissance de l'installation de production d'eau chaude sanitaire. Il conserve les mêmes fonctionnalités que dans le coffret solaire.

Exemple : 1 ballon solaire avec un appoint électrique

6) TRANSPORT, STOCKAGE, MANUTENTION

TRANSPORT - STOCKAGE

L'appareil doit être transporté et stocké dans son emballage d'origine jusqu'à son lieu d'installation.


Température ambiante inférieure à 30°C.

Humidité relative 30 à 80 % (non condensée).

MANUTENTION

- L'équipement sera manutentionné par des moyens de levage adéquats et par du personnel qualifié :
 - à l'aide d'un transpalette
 - par les oreilles de levage à l'aide d'un pont ou d'une grue d'une CMU compatible avec la charge à lever. Les élingues de manutention seront en adéquation avec la charge et en très bon état.
- L'équipement doit être manutentionné **vide** et sans aucun accessoire complémentaire non livré par le fabricant.
- La manutention sera effectuée par le client.

HAUTEUR DE BASCULEMENT

7) ENTRETIEN

Équipe SAV 03-86-64-73-74 piecesdetachees@charot.fr www.charot.fr

La fréquence des interventions dépend de l'eau stockée (dureté, turbidité, agressivité, etc.) et du débit.

En conséquence il appartient de définir les périodicités d'entretien en fonction de chaque utilisation en ne dépassant pas les délais maximums indiqués ci-dessous

Pour toute intervention à l'intérieur du réservoir ou nécessitant le démontage d'un accessoire :

- Mettre les éléments chauffants hors service et fermer la vanne d'arrivée d'eau froide.
- Vidanger le ballon par la vanne en partie inférieure prévue à cet effet (voir schémas).
- Réaliser une entrée d'air par une vanne ou un robinet positionné à proximité du ballon pour éviter la dépression lors de la vidange, pouvant entrainer la détérioration du ballon ou son revêtement (hors garantie).

Les opérations d'entretien suivantes sont à appliquer en fonction de l'équipement du ballon.

A la mise en service

- Resserrer les connexions du thermoplongeur après une semaine de fonctionnement
- Manœuvrer la ou les soupapes de sécurité

Entretien mensuel

- Effectuer une chasse rapide afin d'évacuer les dépôts
- Vérifier le bon fonctionnement :
 - ✓ du purgeur d'air
 - ✓ de la soupape
 - ✓ du thermostat

Entretien semestriel

- Démonter le thermoplongeur et le nettoyer soigneusement de tout dépôt (version électrique)
- Resserrer les connexions du thermoplongeur afin d'éviter les échauffements (version électrique)

Entretien annuel

- Nettoyer l'intérieur du réservoir des dépôts éventuels
- Vérifier le bon fonctionnement du circulateur

Entretien avant 2 ans de service

• Vérifier l'anode magnésium et la remplacer avant usure complète (version ATL)

8) GARANTIES

Nos réservoirs Mixtherm sont garantis contre la perforation :

• Réservoirs ATL ou Inox 5 ans

Les équipements électriques sont garantis 1 an

Cette garantie se limite à notre choix, à la réparation en notre usine de SENS ou au remplacement gratuit des pièces reconnues défectueuses.

Elle exclut tout autre dommage, déplacement, frais de main d'œuvre qui pourraient en résulter.

LE RETOUR EN NOTRE USINE EST OBLIGATOIRE

Le remplacement des pièces ne prolonge pas la durée de la garantie et ne peut donner lieu à aucune indemnité pour frais divers ou préjudice quelconque

Notre garantie ne couvre pas :

- L'entartrage, le gel, les corrosions extérieures
- Les détériorations imputables à la manutention ou au transport
- Le manque d'eau
- Les fausses manœuvres
- Les surpressions et coups de béliers
- Les erreurs d'installation ou d'utilisation
- Le manque d'entretien (voir chapitre 7)
- La dépression résultant de l'absence d'entrée d'air lors de la vidange du ballon

Les schémas d'installation sont indicatifs et n'empêchent pas de se conformer aux règles de l'art et aux réglementations ou prescriptions du D.T.U en vigueur

LA SOCIETE CHAROT SE RESERVE LE DROIT D'EFFECTUER DES MODIFICATIONS DE FABRICATION SANS PREAVIS.

9) PIECES DE RECHANGE

ACCESSOIRES THERMOPLONGEUR

JOINTS						
Diamètre	Quantité	N° Code				
Ø 33	6	2565				
Ø 40	6	2566				

ACCESSOIRES CHAUFFE-EAU

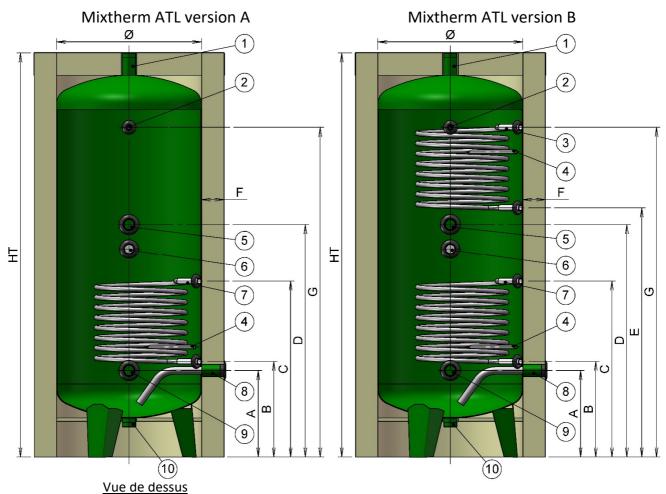
INTITULES	N° Code
Thermomètre à cadran Ø 80	190
Soupape de sécurité Ø 20/27 F	164
Anode Lg 400	790 061
Clé plate pour thermoplongeur Ø 33 (cote sur plat 55mm)	2549
Clé plate pour thermoplongeur Ø 40 (cote sur plat 61mm)	2564
Thermostat embrochable 68°C	2560
Thermostat nu R 30/90° S 110°C	571 060
Thermostat nu R 30/75° S 98°C	571 061

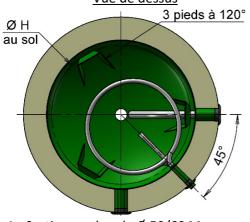
THERMOPLONGEUR COMPLET Ø 40

Puissance kW	Longueur thermoplongeur (mm)	N° Code
1.5	240	2891
2	340	2893

7.	3	400	2645
AT	4.5	438	2646
Version ATL	6	508	2647
ers	9	668	2648
^	12	800	2649

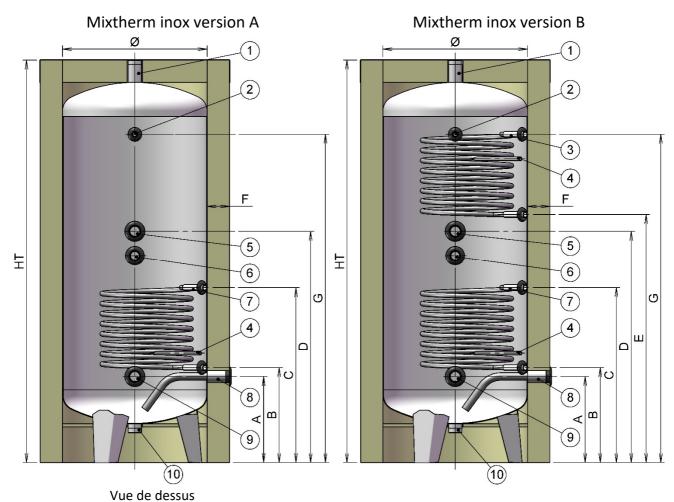
×	3	400	2640
lno	4.5	438	2641
on	6	508	2642
Version Inox	9	668	2643
Λ	12	800	2644

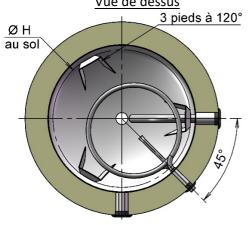

10) EN CAS DE PANNE


Pour toute intervention mettre le chauffe-eau Mixtherm Hors tension.

Pannes	A faire
Le matin, l'eau est froide	 Vérifier que la tension d'alimentation arrive : 1/ aux thermoplongeurs 2/ au sectionneur Vérifier les fusibles Vérifier le thermostat de sécurité
Lors de la mise en route le disjoncteur déclenche Si la panne persiste	Faire intervenir un professionnel

11) CARACTERISTIQUES


11.1) Dimensions - Poids - Puissances



- 1 Sortie eau chaude Ø 50/60 M.
- 2 Prise thermomètre Ø 15/21 F.
- 3 Echangeur haut Ø 20/27 M.
- 4 Prise de sonde Ø 17.
- 5 Ø 40/49 F pour Appoint électrique haut (option).
- 6 Anode de protection (version acier).
- 7 Echangeur bas Ø 20/27 M.
- 8 Arrivée eau froide
 Ø 26/34 F pour 200L et 300L.
 Ø 40/49 F pour 500L à 1000L.
- 9 Ø 40/49 F pour Appoint électrique bas (option).
- 10 Vidange totale Ø 50/60 M.

Volume (en L)		200	300	500	750	1000
HT Bascul.		1595	1585	1820	1960	2390
Volume	Version A	197	290	466	770	981
réel (en L)	Version B	195	287	463	765	975
	HT	1585	1570	1810	1945	2375
	Ø	450	550	650	80	00
	Α	325	338	385	40	02
J.S	В	365	378	425	44	12
isio i mm	С	675	698	785	882	1097
Dimensions (en mm)	D	940	898	1045	1102	1297
٥ (E	1005	958	1115	1142	1357
	F	50 10		100		
	G	1315	1278	1475	1582	2012
	Н	505	570	605	75	50
Daida nat-	Version A	56	67	94	127	155
Poids nets	Version B	60	72	100	135	166
Poids (en k	5	6	14	18	21	

- 1 Sortie eau chaude Ø 50/60 M.
- 2 Prise thermomètre Ø 15/21 F.
- 3 Echangeur haut Ø 20/27 M.
- 4 Prise de sonde Ø 17.
- 5 Ø 40/49 F pour Appoint électrique haut (option).
- 6 Ø 33/42 F.
- 7 Echangeur bas Ø 20/27 M.
- 8 Arrivée eau froide
 Ø 26/34 F pour 200L et 300L.
 Ø 40/49 F pour 500L à 1000L.
- 9 Ø 40/49 F pour Appoint électrique bas (option).
- 10 Vidange totale Ø 50/60 M.

Volume	Volume (en L)		300	500	750	1000
HT Bascul.		1595	1585	1820	1960	2390
Volume	Version A	198	295	468	772	983
réel (en L)	Version B	196	292	465	767	977
	HT	1585	1570	1810	1945	2375
	Ø	450	550	650	80	00
	Α	325	338	385	40	02
S _	В	365	378	425	44	42
isio	С	675	698	785	882	1097
Dimensions (en mm)	D	940	898	1045	1102	1297
ق)	E	1005	958	1115	1142	1357
	F	50		100		
	G	1315	1278	1475	1582	2012
	Н	505	570	605	750	
Poids nets	Version A	40	45	71	114	138
	Version B	44	50	76	122	149
Poids (en k	g) jaquette	5	6	14	18	21

11.2) Caractéristiques des serpentins

Mixtherm version A (1 serpentin) et version B (2 serpentins identiques)

BT - basse température Primaire 55/45°C - Secondaire 10/40°C; eau glycolée 30% au primaire

HT - haute température Primaire 90/70°C - Secondaire 10/60°C

MT - haute température Primaire 80/60°C - Secondaire 10/60°C

	Surface	serpentin bas (version A et B) et serpentin haut (version B)								
Capacité pannea		Volume du	Surface	Puissance par serpentin (kW)						
Сарасно	solaire (m²)	serpentin (litres)	(m²)	BT PdC (mce)		НТ	PdC (mce)	MT	PdC (mce)	
200	2 à 4	1,7	0,3	2,6	0,05	7,8	0,07	3,9	0,025	
300	4 à 6	2.6	0,63	6.5	0.20	10.3	0.57	11 5	0.22	
500	6 à 8	2,6		6,5	0,39	19,2	0,57	11,5	0,23	
750	8 à 12	4	0,98	10,5	1,34	31,5	2,24	21,9	1,15	
1000	12 à 16	5,4	1,33	15	3,3	39,5	3,4	30,5	2	

(1) Valeur indicative sur la base de capteurs solaires ayant une puissance de 580 W/m².

Mixtherm version B (2 serpentins) Variante double serpentin

Les deux serpentins du Mixtherm version B reliés en série grâce à une pièce de liaison (en option). Voir schéma paragraphe 3.6)

Puissances indiquées pour régimes secondaires 10/60 °C

	Deux serpentins en série									
Capacité	Volume des serpentins	Surface	Puissand	e pour prima	Débit primaire	Pertes de charge				
	(litre)	(m ⁻)				(m³/h)	(mCE)			
200	3,4	0,6	3,8	5	7,2	0,13	0,1			
300	гэ	5,2 1,26	.,26 16,5	19.5	23	0,5	1.2			
500	5,2						1,2			
750	8	1,96	26,5	33,5	41,5	0,9	2,5			
1000	10,8	2,66	35,5	48	59	1,2	4,9			

11.3) Isolation

Jaquettes démontables en kit (pour installation en intérieur).

Jaquette Calofibre M1:

Classement au feu M1 avec P.V. du laboratoire accrédité COFRAC.

- Isolation par fibre polyester recouverte d'un P.V.C. souple.
- Orifices prédécoupés.
- Isolation du fond inférieur par laine minérale ép. 15 mm.
- Chapeau en une pièce, manteau en une ou deux pièces suivant capacité.
- Assemblage par fermeture éclair.

Pertes à l'arrêt (kWh.24h)

Valeurs mesurées selon EN 15332 [Rapport d'essai RTH 1315182] Uniquement pour Ep 100mm de 500 à 3000 litres.

	ume n L)	200	300	500	750	1000
calo	50	1,90	2,43			
Ep. (100			1,39	1,73	2,04

Constantes de refroidissement Cr (Wh/I.j.K)

	ume n L)	200	300	500	1000	
calo	50	0,213	0,183			
Ep. (100			0,066	0,049	0,046

Nota:

Ces valeurs sont calculées ou justifiées pour des épaisseurs de laine minérale de 100mm. L'épaisseur réelle mesurée peut varier en fonction de la compression du matériau une fois l'isolation montée sur le ballon.

^{*} Dans les logiciels de calcul RE2020, indiquer VALEUR PAR DEFAUT pour le 200 et 300 L.

11.4) Données Ecoconception selon règlements 812/2013 et 814/2013

Mixtherm version A:

En jaquette Calofibre M1 épaisseur 100mm (sauf 200L et 300L en épaisseur 50) :

Volume (en L)	200	300	500	750	1000
Etiquette énergétique	С	D	Α		
Pertes statiques (W)	79	101	58	72	85
Volume réel (L)	198	295	468	772	983

Mixtherm version B:

En jaquette Calofibre M1 épaisseur 100mm (sauf 200L et 300L en épaisseur 50) :

Volume (en L)	200	300	500	750	1000
Etiquette énergétique	С	D	Α		
Pertes statiques (W)	79	101	58	72	85
Volume réel (L)	196	292	465	767	977